48 research outputs found

    The role of the cerebellum in unconsciuos and conscious processing of emotions: a review

    Get PDF
    Studies from the past three decades have demonstrated that there is cerebellar involvement in the emotional domain. Emotional processing in humans requires both unconscious and conscious mechanisms. A significant amount of evidence indicates that the cerebellum is one of the cerebral structures that subserve emotional processing, although conflicting data have been reported on its function in unconscious and conscious mechanisms. This review discusses the available clinical, neuroimaging and neurophysiological data on this issue. We also propose a model in which the cerebellum acts as a mediator between the internal state and external environment for the unconscious and conscious levels of emotional processing

    Editorial: The cerebellar role in psychiatric disorders: Emerging evidence and future perspectives

    Get PDF
    First paragraph: Over the past decades, clinical, neuroimaging, anatomical, and physiological studies have established the presence of a “cognitive” and a “limbic” cerebellum—the former being represented primarily in posterolateral regions and the dentate nuclei, and the latter in the vermis and the fastigial nuclei (Schmahmann et al., 2007). The “dysmetria of thought,” following damage to the cognitive cerebellum (Schmahmann, 1998) and the neuropsychiatric impairments, following damage to the limbic cerebellum (Schmahmann et al., 2007) comprise the so called “cerebellar cognitive affective syndrome” (Schmahmann and Sherman, 1998). These findings have recently renewed interest in a cerebellar pathophysiology of a broad range of neurodevelopmental and psychiatric disorders (e.g. Hoppenbrouwers et al., 2008; Lupo et al., 2019; Van Overwalle et al., 2020)

    Lobular patterns of cerebellar resting-state connectivity in adults with Autism Spectrum Disorder

    Get PDF
    Autism spectrum disorder is a neurodevelopmental disorder characterized by core deficits in social functioning. Core autistics traits refer to poor social and imagination skills, poor attention-switching/strong focus of attention, exceptional attention to detail, as expressed by the autism-spectrum quotient. Over the years, the importance of the cerebellum in the aetiology of autism spectrum disorder has been acknowledged. Neuroimaging studies have provided a strong support to this view, showing both structural and functional connectivity alterations to affect the cerebellum in autism spectrum disorder. According to the underconnectivity theory, disrupted connectivity within cerebello-cerebral networks has been specifically implicated in the aetiology of autism spectrum disorder. However, inconsistent results have been generated across studies. In this study, an integrated approach has been used in a selected population of adults with autism spectrum disorder to analyse both cerebellar morphometry and functional connectivity. In individuals with autism spectrum disorder, a decreased cerebellar grey matter volume affected the right Crus II, a region showing extensive connections with cerebral areas related to social functions. This grey matter reduction correlates with the degree of autistic traits as measured by autism-spectrum quotient. Interestingly, altered functional connectivity was found between the reduced cerebellar Crus II and contralateral cerebral regions, such as frontal and temporal areas. Overall, the present data suggest that adults with autism spectrum disorder present with specific cerebellar structural alterations that may affect functional connectivity within cerebello-cerebral modules relevant to social processing and account for core autistics traits

    The cerebellar predictions for social interactions: theory of mind abilities in patients with degenerative cerebellar atrophy

    Get PDF
    Recent studies have focused on the role of the cerebellum in the social domain, including in Theory of Mind (ToM). ToM, or the "mentalizing" process, is the ability to attribute mental states, such as emotion, intentions and beliefs, to others to explain and predict their behavior. It is a fundamental aspect of social cognition and crucial for social interactions, together with more automatic mechanisms, such as emotion contagion. Social cognition requires complex interactions between limbic, associative areas and subcortical structures, including the cerebellum. It has been hypothesized that the typical cerebellar role in adaptive control and predictive coding could also be extended to social behavior. The present study aimed to investigate the social cognition abilities of patients with degenerative cerebellar atrophy to understand whether the cerebellum acts in specific ToM components playing a role as predictive structure. To this aim, an social cognition battery was administered to 27 patients with degenerative cerebellar pathology and 27 healthy controls. In addition, 3D T1-weighted and resting-state fMRI scans were collected to characterize the structural and functional changes in cerebello-cortical loops. The results evidenced that the patients were impaired in lower-level processes of immediate perception as well as in the more complex conceptual level of mentalization. Furthermore, they presented a pattern of GM reduction in cerebellar portions that are involved in the social domain such as crus I-II, lobule IX and lobule VIIIa. These areas showed decreased functional connectivity with projection cerebral areas involved in specific aspects of social cognition. These findings boost the idea that the cerebellar modulatory function on the cortical projection areas subtends the social cognition process at different levels. Particularly, regarding the lower-level processes, the cerebellum may act by implicitly matching the external information (i.e., expression of the eyes) with the respective internal representation to guarantee an immediate judgment about the mental state of others. Otherwise, at a more complex conceptual level, the cerebellum seems to be involved in the construction of internal models of mental processes during social interactions in which the prediction of sequential events plays a role, allowing us to anticipate the other person's behavior

    The cerebellar topography of attention sub-components in Spinocerebellar Ataxia Type 2

    Get PDF
    Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease characterized by a progressive cerebellar syndrome and multiple-domain cognitive impairments. The cerebellum is known to contribute to distinct functional networks related to higher-level functions. The aims of the present study were to investigate the different sub-components of attention and to analyse possible correlations between attention deficits and specific cerebellar regions in SCA2 patients. To this purpose, 11 SCA2 patients underwent an exhaustive attention battery that evaluated several attention sub-components. The SCA2 group performed below the normal range in tasks assessing selective attention, divided attention, and sustained attention, obtaining negative Z-scores. These results were confirmed by non-parametric Mann-Whitney U tests that showed significant differences between SCA2 and control subjects in the same sub-components of the attention battery, allowing us to speculate on cerebellar involvement when a high cognitive demand is required (i.e., multisensory integration, sequencing, prediction of events, and inhibition of inappropriate response behaviours). The voxel-based morphometry analysis showed a pattern of significantly reduced grey matter volume in specific cerebellar lobules. In particular, the SCA2 patients showed significant grey matter loss in bilateral regions of the anterior cerebellar hemisphere (I-V) and in the posterior lobe (VI-IX) and posterior vermis (VI-IX). Statistical analysis found significant correlations between grey matter reductions in the VIIb/VIIIa cerebellar lobules and impairments in Sustained and Divided Attention tasks and between grey matter reduction in the vermal VI lobule and impairment in the Go/NoGo task. For the first time, the study demonstrated the involvement of specific cerebellar lobules in different sub-components of the attention domain, giving further support to the inclusion of the cerebellum within the attention network

    Radioimmune Imaging of α4β7 Integrin and TNFα for Diagnostic and Therapeutic Applications in Inflammatory Bowel Disease

    Get PDF
    Imaging using radiolabelled monoclonal antibodies can provide, non-invasively, molecular information which allows for the planning of the best treatment and for monitoring the therapeutic response in cancer, as well as in chronic inflammatory diseases. In the present study, our main goal was to evaluate if a pre-therapy scan with radiolabelled anti-α4β7 integrin or radiolabelled anti-TNFα mAb could predict therapeutic outcome with unlabelled anti-α4β7 integrin or anti-TNFα mAb. To this aim, we developed two radiopharmaceuticals to study the expression of therapeutic targets for inflammatory bowel diseases (IBD), to be used for therapy decision making. Both anti-α4β7 integrin and anti-TNFα mAbs were successfully radiolabelled with technetium-99m with high labelling efficiency and stability. Dextran sulfate sodium (DSS)-induced colitis was used as a model for murine IBD and the bowel uptake of radiolabelled mAbs was evaluated ex vivo and in vivo by planar and SPECT/CT images. These studies allowed us to define best imaging strategy and to validate the specificity of mAb binding in vivo to their targets. Bowel uptake in four different regions was compared to immunohistochemistry (IHC) score (partial and global). Then, to evaluate the biomarker expression prior to therapy administration, in initial IBD, another group of DSS-treated mice was injected with radiolabelled mAb on day 2 of DSS administration (to quantify the presence of the target in the bowel) and then injected with a single therapeutic dose of unlabelled anti-α4β7 integrin or anti-TNFα mAb. Good correlation was demonstrated between bowel uptake of radiolabelled mAb and immunohistochemistry (IHC) score, both in vivo and ex vivo. Mice treated with unlabelled α4β7 integrin and anti-TNFα showed an inverse correlation between the bowel uptake of radiolabelled mAb and the histological score after therapy, proving that only mice with high α4β7 integrin or TNFα expression will benefit of therapy with unlabelled mAb.This work has been supported by grants of Boehringer Ingelheim Pharma GmbH, & Co. KG, Biberach an der Riß, Germany. This work was partially supported by Instituto de Salud Carlos III (grant PT20/00044), co-funded by European Regional Development Fund (ERDF), “A way to make Europe” and by Comunidad de Madrid (S2022/BMD-7403 RENIM-CM), co-funded by European Structural and Investment Fund. And by the Fundación Ramón Areces

    Comparison of cerebellar grey matter alterations in bipolar and cerebellar patients: evidence from voxel-based analysis

    Get PDF
    The aim of this study was to compare the patterns of cerebellar alterations associated with bipolar disease with those induced by the presence of cerebellar neurodegenerative pathologies to clarify the potential cerebellar contribution to bipolar affective disturbance. Twenty-nine patients affected by bipolar disorder, 32 subjects affected by cerebellar neurodegenerative pathologies, and 37 age-matched healthy subjects underwent a 3T MRI protocol. A voxel-based morphometry analysis was used to show similarities and differences in cerebellar grey matter (GM) loss between the groups. We found a pattern of GM cerebellar alterations in both bipolar and cerebellar groups that involved the anterior and posterior cerebellar regions (p = 0.05). The direct comparison between bipolar and cerebellar patients demonstrated a significant difference in GM loss in cerebellar neurodegenerative patients in the bilateral anterior and posterior motor cerebellar regions, such as lobules I−IV, V, VI, VIIIa, VIIIb, IX, VIIb and vermis VI, while a pattern of overlapping GM loss was evident in right lobule V, right crus I and bilateral crus II. Our findings showed, for the first time, common and different alteration patterns of specific cerebellar lobules in bipolar and neurodegenerative cerebellar patients, which allowed us to hypothesize a cerebellar role in the cognitive and mood dysregulation symptoms that characterize bipolar disorder

    Aberrant cerebello-cerebral connectivity in remitted bipolar patients 1 and 2: new insight into understanding the cerebellar role in mania and hypomania

    Get PDF
    Bipolar disorder (BD) is a major mental illness characterized by periods of (hypo) mania and depression with inter-episode remission periods. Functional studies in BD have consistently implicated a set of linked cortical and subcortical limbic regions in the pathophysiology of the disorder, also including the cerebellum. However, the cerebellar role in the neurobiology of BD still needs to be clarified. Seventeen euthymic patients with BD type1 (BD1) (mean age/SD, 38.64/13.48; M/F, 9/8) and 13 euthymic patients with BD type 2 (BD2) (mean age/SD, 41.42/14.38; M/F, 6/7) were compared with 37 sex- and age-matched healthy subjects (HS) (mean age/SD, 45.65/14.15; M/F, 15/22). T1 weighted and resting-state functional connectivity (FC) scans were acquired. The left and right dentate nucleus were used as seed regions for the seed based analysis. FC between each seed and the rest of the brain was compared between patients and HS. Correlations between altered cerebello-cerebral connectivity and clinical scores were then investigated. Different patterns of altered dentate-cerebral connectivity were found in BD1 and BD2. Overall, impaired dentate-cerebral connectivity involved regions of the anterior limbic network specifically related to the (hypo)manic states of BD. Cerebello-cerebral connectivity is altered in BD1 and BD2. Interestingly, the fact that these altered FC patterns persist during euthymia, supports the hypothesis that cerebello-cerebral FC changes reflect the neural correlate of subthreshold symptoms, as trait-based pathophysiology and/or compensatory mechanism to maintain a state of euthymia

    Development of a psychiatric disorder linked to cerebellar lesions

    Get PDF
    Cerebellar dysfunction plays a critical role in neurodevelopmental disorders with long-term behavioral and neuropsychiatric symptoms. A 43-year-old woman with a cerebellum arteriovenous malformation and history of behavioral dysregulation since childhood is described. After the rupture of the cerebellar malformation in adulthood, her behavior morphed into specific psychiatric symptoms and cognitive deficits occurred. The neuropsychological assessment evidenced impaired performance in attention, visuospatial, memory, and language domains. Moreover, psychiatric assessment indicated a borderline personality disorder. Brain MRI examination detected macroscopic abnormalities in the cerebellar posterior lobules VI, VIIa (Crus I), and IX, and in the posterior area of the vermis, regions usually involved in cognitive and emotional processing. The described patient suffered from cognitive and behavioral symptoms that are part of the cerebellar cognitive affective syndrome. This case supports the hypothesis of a cerebellar role in personality disorders emphasizing the importance of also examining the cerebellum in the presence of behavioral disturbances in children and adults

    Neutralizing antibodies to Omicron after the fourth SARS-CoV-2 mRNA vaccine dose in immunocompromised patients highlight the need of additional boosters

    Get PDF
    IntroductionImmunocompromised patients have been shown to have an impaired immune response to COVID-19 vaccines.MethodsHere we compared the B-cell, T-cell and neutralizing antibody response to WT and Omicron BA.2 SARS-CoV-2 virus after the fourth dose of mRNA COVID-19 vaccines in patients with hematological malignancies (HM, n=71), solid tumors (ST, n=39) and immune-rheumatological (IR, n=25) diseases. The humoral and T-cell responses to SARS-CoV-2 vaccination were analyzed by quantifying the anti-RBD antibodies, their neutralization activity and the IFN-γ released after spike specific stimulation.ResultsWe show that the T-cell response is similarly boosted by the fourth dose across the different subgroups, while the antibody response is improved only in patients not receiving B-cell targeted therapies, independent on the pathology. However, 9% of patients with anti-RBD antibodies did not have neutralizing antibodies to either virus variants, while an additional 5.7% did not have neutralizing antibodies to Omicron BA.2, making these patients particularly vulnerable to SARS-CoV-2 infection. The increment of neutralizing antibodies was very similar towards Omicron BA.2 and WT virus after the third or fourth dose of vaccine, suggesting that there is no preferential skewing towards either virus variant with the booster dose. The only limited step is the amount of antibodies that are elicited after vaccination, thus increasing the probability of developing neutralizing antibodies to both variants of virus.DiscussionThese data support the recommendation of additional booster doses in frail patients to enhance the development of a B-cell response directed against Omicron and/or to enhance the T-cell response in patients treated with anti-CD20
    corecore